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ABSTRACT

This paper describes a general purpose algorithm to segment any

kind of lesions in CT images. The algorithm expects a click or a

stroke inside the lesion from the user and learns gray level properties

on the fly. It then uses the random walker algorithm and combines

multiple 2D segmentation results to produce the final 3D segmen-

tation of the lesion. Quantitative evaluation on 293 lesions demon-

strates that the method is ready for clinical use.

Index Terms— Cancer Imaging, Lesion Segmentation

1. INTRODUCTION

Cancer is the second leading cause of death in the United

States as half a million people die each year. For this rea-

son, it is important to diagnose the disease as early as possible

and monitor it carefully as it is being treated. In addition to

primary tumors, physicians are also interested in secondary

tumors that might have metastasized through the rest of the

body. The main areas of concern are the liver (because many

forms of cancer generate liver metastases) and lymph nodes

(because cancers spread through the lymphatic system).

The current standards to measure lesions for cancer mon-

itoring are the WHO and RECIST criteria. The first criterion

was proposed in 1979 by the World Health Organization [1]

and measures a tumor in two dimensions by its maximum di-

ameter in an axial image multiplied by its largest perpendicu-

lar diameter in the same image. In 2000, the Response Eval-

uation Criteria in Solid Tumor (RECIST) [2] stated that the

maximum diameter in an axial image alone could be used to

quantify tumor sizes. It has been shown however that volume

measurements provide more accurate estimates of the lesion

sizes than 1- and 2-D criteria [3]. Unfortunately, there are no

good tools available to measure lesion volumes and it is very

time consuming to manually outline them in 3D. In this paper,

we propose a semi-automatic segmentation algorithm which,

from a single click inside or a stroke through the lesion, can

produce its 3D segmentation.

Most of the work on medical analysis for cancer screening

and treatment has been in the context of lung cancer, mam-

mography, and colon cancer. There has been very little inter-

est in liver lesion segmentation [4, 5]. The work has focused

on relatively simple hypodense lesions which are nicely con-

trasted against the parenchyma. Papers have presented sim-

ple image processing techniques which have been tested on

few examples. Of note is the work in [6] which uses Ad-

aBoost to learn 1-D profiles on 30 examples and segment

30 lesions in 2D. Unfortunately, no validation is presented.

Lymph node segmentation has received more attention in re-

cent years (see [7, 8] and references herein) with more mature

techniques that have been tested on larger number of exam-

ples. The main disadvantage with techniques published so

far is that they focus on one type of lesions and are not gen-

eral. In clinical cases however, radiologists might want to

look at primary tumors, some liver metastases, and the lym-

phatic system. Therefore, it is very important to provide a

single tool capable of segmenting any type of lesion. This

segmentation task presents various difficulties however. First,

sizes and shapes vary significantly among lesions. In addi-

tion, the lesion itself can be highly heterogeneous and contain

calcifications or necrotic regions. Finally, lesions and in par-

ticular lymph nodes are adjacent to iso-intensity soft tissues

and high contrast structures such as blood vessels. In this

work, we focus primarily on liver lesions (tumors and metas-

tases) and lymph nodes, but have also applied the technique

to a large number of other lesions.

2. SEGMENTATION ALGORITHM

Our algorithm is divided into three steps. First, the system

learns a rough gray level distribution for the lesion using the

clicked point or the stroke. Second, the lesion is segmented

on the 2D plane on which the user interacted, as well as on

other 2D planes orthogonal to it. After each 2D segmentation,

the gray level distributions for the lesion and the background

are updated. Third, the random walker algorithm is used to

produce the 3D segmentation.

2.1. Gray Level Distribution Estimation

Since lesions can be of any size or shape, we decided to rely

solely on an intensity model for the lesion. However, lesions
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are all different, so it is crucial to learn an intensity model for

the lesion currently being segmented. The fuzzy connected-

ness algorithm [9] computes the cost of the best path between

a set of seeds and every pixel in the image. In a sense, it pro-

vides a measure of how strongly a pixel belongs to the regions

represented by the seeds. The region seeds are defined by the

click point or the pixels on the stroke while the background

seeds are placed along a circle and in the prolongation of the

stroke (see Fig. 1(a)-(b)).

(a) (b) (c) (d)

Fig. 1. Multiseeded fuzzy connectedness: (a) Click point seeds (green

for region, red for background); (b) Stroke seeds (green for region, red for

background); (c) Lesion cost CL(x, y); (d) Labels L(x, y).

We bring two modifications to the traditional multi-region

fuzzy connectedness segmentation. First, we use the mul-

tiseeded technique proposed by Herman and Carvalho [10]

where the regions compete as the paths are being built. We

also use a different cost function. In the traditional fuzzy

connectedness approach, one might use the mean and vari-

ance of the region gray levels to prevent a slow varying path

to pass through regions with different statistics. In our situ-

ation, these statistics are unknown and cannot be assumed to

be Gaussian. So, instead, the cost function is the range of gray

level intensities along the path. We implement fuzzy connect-

edness using Dijkstra’s algorithm with a heap to keep track of

the current best path. At every pixel (x, y), we store the min-

imum intensity Fm(x, y), the maximum intensity FM (x, y)
and the cost C(x, y) along the current best path to that pixel.

The information at its neighbor (i, j) is updated by:

F m(i, j) = min{F m(x, y), f(i, j)},
F M (i, j) = max{F M (x, y), f(i, j)},

C(i, j) = F M (i, j)− F m(i, j)

where f(i, j) is the gray level at pixel (i, j). This cost func-

tion favors paths that do not vary too much in gray level and

therefore stay within one homogeneous region. Heteroge-

neous lesions can still be recovered when each seed point on

the stroke builds its own homogeneous region which, all put

together, form a larger heterogeneous region.

The multiseeded algorithm from [10] outputs the cost im-

age CL(x, y) which is the cost of reaching pixel (x, y) from

a lesion seed, as well as a label image L(x, y) = 1 if pixel

(x, y) belongs to the lesion and 0 otherwise (see Fig. 1(c)-(d)).

The lesion histogram HL is built by adding the gray value of

every lesion labeled pixel a number of times inversely propor-

tional to the cost at that pixel (i.e.: 100/CL(x, y)).
This method is not infallible and it could happen that an

unknown region (belonging neither to the lesion nor to the

background) gets labeled as lesion (see the rib in Fig. 2). To

eliminate the wrong elements that might have been introduced

in the lesion histogram, all modes in the histogram that are not

sufficiently represented in the stroke are deleted.

Fig. 2. Mislabeled pixels from the multiseeded fuzzy connectedness.

2.2. 2D Segmentation

Using the lesion statistics, the response from the histogram

HL(f(x, y)) is evaluated at every pixel and combined with

the cost function CL(x, y) from the fuzzy connectedness to

compute the response image g(x, y):

g(x, y) =

{
HL(f(x, y))

(
1− CL(x,y)

Cmax
L

)
if L(x, y) = 1,

HL(f(x, y))/2 if L(x, y) = 0.

g(x, y) emphasizes the difference between the pixels in-

side the lesion (which respond well to the lesion histogram

and have low cost) and the pixels outside the lesion. The im-

age is converted to log-polar coordinates, its gradient is com-

puted (using a 3×21 horizontal mask), and the 2D segmenta-

tion is recovered using a shortest path algorithm.

Fig. 3. Segmentations in the various 2D planes (4 planes in the case of a

stroke and 3 planes in the case of a click point).

Once the lesion has been segmented in the interaction

plane, pixels inside the lesion are used to update the lesion

histogram HL and pixels within 10 pixels outside the lesion

are used to generate the background histogram HB .

Additional 2D contours are recovered on other planes as

follows. In the case of a clicked point, the two other main

MPRs are processed. In the case of a stroke, we also process

the plane that is perpendicular to the stroke plane and also

contains the stroke. Fig. 3 shows the results of the 2D seg-

mentations. Since background statistics have also been col-

lected, the response image is now defined as:

g′(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(x, y) if HL(f(x, y)) > HB(f(x, y))

else
3HL(f(x,y))

4

(
1− CL(x,y)

Cmax
L

)
if L(x, y) = 1

HL(f(x, y))/4 if L(x, y) = 0
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2.3. 3D Segmentation

The final step of the algorithm consists of applying the ran-

dom walker segmentation algorithm proposed by Grady [11].

The seeds for the random walker are generated directly from

the 2D segmentations by simply choosing all the pixels that

are a certain distance away from the segmentation boundaries

(see Fig. 4). The algorithm computes the probability that a

random walker initiating its walk at each voxel first arrives

at a foreground seed before arriving at a background seed. It

was shown in [11] that these probabilities can be efficiently

computed by solving a sparse system of linear equations.

Typically, the random walker probabilities would be

thresholded at 0.5 to produce the final binary segmenta-

tion. We propose the following size preserving smoothing

algorithm. First, the size of the lesion is determined if the

probabilities were to be thresholded at 0.5. Then, the prob-

abilities are smoothed using a standard linearly separable

Gaussian filter. Finally, the smoothed probabilities are thresh-

olded at the level that leads to the same lesion size. The final

segmentation result is shown in the bottom part of Fig. 4.

Fig. 4. Random walker segmentation: seeds in 2D planes (green for region,

red for background) and resulting 3D segmentation (with volume rendering).

3. EXPERIMENTS AND RESULTS

We collected 115 CT datasets from patients with various types

of cancer. The datasets were acquired at 10 different clini-

cal sites with different protocols and slice thicknesses ranging

from 1 to 5 mm. Radiologists at the different hospitals iden-

tified and manually segmented a total of 293 lesions in these

datasets. Among these lesions, we had 159 liver lesions, 98

lymph nodes, and 36 other lesions in lungs, pancreas, colon,

ovaries, rectum, etc. The lesions ranged in size from 0.1 to

700 mL. We also asked the radiologists to segment the lesions

using the semi-automatic algorithm.

Fig. 5 shows different segmentation results. The first 7 are

liver lesions (the 7th is a hyperdense lesion and the 5th con-

tains a necrotic core). The next 3 images contain many lymph

nodes. The 11th is an ovarian lesion, the 12th is a thyroid

lesion, the 13th is a pancreas lesion, the 14th is a bladder le-

sion, and the 15th is a kidney lesion. The algorithm produces

very good results on all these lesions. Fig. 6 shows examples

where the segmentation results are bad. In all three cases, the

algorithm has leaked into neighboring structures that are very

similar in gray level.

Fig. 5. Segmentation results on various lesions.

Fig. 6. Bad segmentation results.

To evaluate the performance of the algorithm quantita-

tively, we computed the following measures. The normalized

volume difference is defined as Vd = |VA−VGT |
VGT

where VA is

the automatically segmented volume, VGT is the ground truth

volume. The volume overlap reflects the relative position of

the two objects better and is defined as Vo = VA∩VGT

VA∪VGT
.

Fig. 7 shows the cumulative histogram of normalized vol-

ume differences over all lesions (bold curve), liver lesions,

lymph nodes, and other lesions. This curve can be thought of

as an ROC curve. It basically shows that in 50% of the cases,

the normalized volume difference is below 25% (18.5% to be

exact) and in 80% of the cases, it is below 50%. It can be

seen that the type of lesion does not influence the behavior of

the algorithm. Other lesions are segmented better probably

because 20 of them are lung lesions which have high contrast

and are relatively easier to segment.

Fig. 8 shows the cumulative histogram of volume non

overlap (1 − Vo) over all lesions (bold curve), liver lesions,

lymph nodes, and other lesions. Again, it can be seen that the

algorithm perform roughly the same on all lesions, slightly

better on other lesions. From visual inspection of segmented

objects, radiologists agree that a volume non overlap of 30%

is good, 30 to 60% is acceptable, and 60% is poor. It can

be seen that 90% of the segmented lesions fall in the good to

acceptable zone and 50% of the lesions are well segmented.

For the lesions that are not correctly segmented, we provide

editing tools that are beyond the scope of this paper [12].

From the binary 3D segmentation, the system automat-

ically computes the volume, RECIST and WHO diameters
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Fig. 7. Cumulative histogram of the normalized volume difference.

Fig. 8. Cumulative histogram of the volume non overlap.

and z-extent of the lesion. To evaluate the accuracy of the

measurements, we scanned a physical phantom containing

31 lesions (spherical and gelcap shaped) of different known

sizes, with a slice thickness of 2mm. We segmented each of

the lesions using 10 different initialization strokes. We then

computed the normalized difference in volume, RECIST di-

ameter, WHO diameter and z-extent between the known mea-

surements and the calculated measurements. The cumulative

histogram for all 10 runs on all 31 lesions is shown in Fig. 9.

It can be seen that in 90% of the cases, the WHO diame-

ter is within 10% of the true diameter, the RECIST diame-

ter within 15% of the true RECIST diameter, and the volume

within 25% of the true volume.

Fig. 9. Cumulative histogram of the normalized measure differences.

4. CONCLUSIONS

We have presented a general algorithm to segment any type of

lesion in 3D CT. We have shown that the algorithm is success-

ful in many cases and actually ready for clinical use. How-

ever, it still has some problems with some cases. In the future,

we will focus more on very heterogeneous lesions.
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